
To appear in "Foundations of Genetic Algorithms IV", Morgan Kaufmann (San Mateo), 1996.

Real Representations

Patrick D. Surrya�b & Nicholas J. Radcliffea�b

fpds,njrg@quadstone.co.uk

aQuadstone Ltd, 16 Chester Street, Edinburgh, EH3 7RA, UK
bDepartment of Mathematics, University of Edinburgh, The Kings Buildings, EH9 3JZ, UK

Abstract

This paper introduces two new representations for real-parameter spaces—the Dedekind
and Isodedekind representations. Point mutation and uniform crossover—in their gen-
eralised, representation-independent form—are shown, when instantiated with respect to
these representations, to give rise to familiar operators for continuous domains, such as
gaussian mutation, blend crossover and line recombination. Both the Dedekind and Isod-
edekind representations are highly non-orthogonal (admitting many illegal chromosomes),
but, as is demonstrated, this causes no practical or theoretical problems. Moreover, these
novel representations are shown to have sensible behaviouras the continuous limit is taken,
while both “traditional” binary coding and Gray coding are shown to have pathological be-
haviour.

1 Introduction

Many optimisation problems are formulated as a search for vectors of real-valued parameters that
form extrema of some function. A variety of both local and global techniques with varying degrees
of specialisation have been proposed for tackling such problems. Evolutionary algorithms have also
been regularly applied in these domains, a particular attraction being that they require only the ability
to evaluate the function at any point. Indeed, evolution strategies have been primarily focussed on
real-parameter optimisation, with theoretical results specialised to this domain. Traditional genetic
algorithms, on the the other hand, are applied to such problems by mapping to a canonical repre-
sentation space of binary strings for which simple operators are defined. Typical “practical” genetic
algorithms specialise these operators by considering the phenotypic effects of the moves they gener-
ate in the search domain of real parameters.



In this paper, we demonstrate deep connections between the approaches favoured for continuous do-
mains in evolution strategies and “pragmatic” genetic algorithms, and the operators developed in
the “traditional binary” genetic algorithm school for combinatorial optimisation. This is achieved
through exploiting a formal procedure for transferring algorithms and operators between arbitrary
search domains. The general goal here is to forge a strong link between explicitly stated beliefs about
which features of a search domain affect performance and the quality of the instantiated search al-
gorithm. In particular, the aim is that good characterisations and beliefs lead to good search perfor-
mance, but equally importantly that poor characterisations result in poor search.

We show that by explicitly designing representations that capture beliefs about the structure of the
search domain of real parameters (such as the importance of locality and continuity), we can instan-
tiate problem-independent algorithms built from generalised mutation and recombination operators.
(In fact, precisely these algorithms have previously been instantiated in combinatorial optimisation
domains; Surry & Radcliffe, 1996.) We find that when particular characterisations are employed, we
derive commonly used operators such as blend crossover, line recombination and gaussian mutation
from the generalised operators.

To facilitate this, we extend previous work on formal construction of representations in discrete (typi-
cally combinatorial) search problems to continuous domains. A sequence of representations forming
increasingly accurate approximations to the continuous space is employed, and requirements for the
limiting process are formulated. When conventional representations for real parameters are consid-
ered within this framework, previously suspected peculiarities in their behaviour are confirmed.

We proceed to develop two formal representations for real-parameter evolutionary optimisation
based on a formal codification of beliefs about the nature and structure of continuous search domains.
We have named the resulting representations theDedekind andIsodedekind representations, for rea-
sons that are explained later. We examine the limiting behaviour of these representations, and derive
problem-specific forms of generic genetic operators introduced previously. These are seen serendip-
itously to reduce to ‘sensible’ operators already widely used for real optimisation.

Having constructed the new representations, we find ourselves able to apply identical (formal) ge-
netic move operators, and therefore identical formal evolutionaryalgorithms with four different rep-
resentations of real parameter spaces—“traditional” binary coding, Gray coding, Dedekind and Isod-
edekind. We observe striking qualitative differences in behaviour of these four representations for
even the simplest objective functions (figure 1).

The primary purposes of this work are to illuminate deep connections between “evolution strategy
style” and “genetic algorithm style” operators, to bridge a gap between discrete and continuous do-
mains, and to expose the formal gene structure underpinning evolutionary approaches to continuous
optimisation. It also, however, provides a study in the formal construction of representations and
operators from explicit codifications of beliefs about the structure of search domains. In this con-
nection, this work also demonstrates convincingly that the characterisation of a particular problem
domain used to induce a representation need not be completely free of ‘conflicting’ beliefs. Although
such characterisations can lead to highlynon-orthogonal representations (in which the legal values
for a given allele are dependent on the current values of others), this is not seen to be problematic in
general—indeed the operators derived from such representations may be more powerful than those
resulting from simpler ones.
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Figure 1:In the spirit of the work presented in Eshelman & Schaffer (1992), this figure illustrates the results
of applying an identical formal algorithm instantiated with the four different real-parameter representations dis-
cussed herein to Schaffer’s F6 function. The two-dimensional function is radially symmetric with global maxi-
mum at��� ��, local maxima on circles of radius�� ��� � � �, and local minima on circles of radius���� ����� � � �.
The search domain is������ ���� � ������ ���� of which the figures show the central region. Each figure
shows all of the points sampled in one typical run of a fixed algorithm based on the R� and BMM operators
(see appendix A). Each algorithm sampled approximately 9000 points in the central region during a run of 100
generations with population size 100. The binary representation (top-left) exhibits extremely poor coverage and
an extremely striated sampling pattern based on the relative periodicity in the function and the representation.
A Gray-coded representation (top-right) typically shows better coverage, as mutation is more effective, but the
sampling pattern is clearly biased. The Dedekind representation (bottom-left) shows much better coverage, but
since R� reduces to BLX-� there is still a tendency to favour the axis directions, and an inward bias on the popu-
lation. The algorithm based on the Isodedekind representation (bottom-right) still shows the inward population
bias since R� reduces to line recombination, but the axial skew is removed.



2 Evolutionary real-parameter optimisation

Optimisation of functions defined over real parameters has a long history, so it is natural that the
area has received significant attention from the evolutionary algorithms community. Several now
converging schools of thought brought different points of view to the attack.

In the evolution-strategy paradigm (Rechenberg, 1973) and in the evolutionary-programmingschool
(Fogelet al., 1966), the vector of parameters is typically interpreted directly as a “genome”, with
“gene” values approximated by floating-point machine values. A variety of specialised recombina-
tion and mutation operators that directly manipulate these parameters have been employed, but to
date their connection to operators used in other search domains has not been apparent. Work with
evolution strategies (Baeck & Schwefel, 1993) stresses the importance of gaussian (creep) mutation
(possibly with adapted width) as a search operator, based on the so-calledprinciple of strong causal-
ity, by which small changes in parameter values are assumed to lead to small changes in the objective
function. We will see later that by formalising this or other beliefs about the search domain, we can
gain insight into what structures the resulting algorithms may be said to be “processing”. Recombi-
nation methods including line recombination (�z � ��x�������y), parameter-wise uniform crossover
(also known as local-discrete recombination)and blend crossover (local-intermediate recombination)
have been employed.

In the genetic-algorithm school, this “parameters-as-genes” approach has not been universally ac-
cepted. The common practice has been to represent and manipulate real parameters as fixed-length
binary strings using either “traditional” integer coding (where bit strings are decoded as integers and
linearly scaled to the appropriate parameter ranges) or “Gray coding” (in which consecutive integers
are coded by bit strings that differ in only a single position). Such binary codings allow “standard”
genetic operators such asN -point crossover and point mutation to be applied in real-parameter opti-
misation, albeit with the restriction that the discretisation must result in�k points per parameter, for
some integerk. They also reflect continuing attachment by many to the dubiousprinciple of minimal
alphabets (Goldberg, 1989), which has been shown to be motivated by highly questionable theoret-
ical observations (Radcliffe, 1991a; Vose & Liepins, 1991).

An increasing proportion of the genetic algorithms community, however, particularly those working
on real-world applications, have pointed out the efficacy of working directly with the real parameters
(e.g. Davis, 1991; Michalewicz, 1992). Using “standard” genetic operators in this case—viewing
parameters as genes—is problematical as has been pointed out by Goldberg (1990), with the result
that ad hoc operators have been generally been used, such as “creep mutation” (Davis, 1991) and
blend crossover (Eshelman & Schaffer, 1992; generalised from the R� operator of Radcliffe, 1991a).
Although practically useful, such approaches have lacked a formal basis (for instance, it is not clear
what a gene is or how the genetic operators are formally defined), and operators are seen conceptually
as acting directly in the search space rather than in a space of genotypes that represents it. In the
coming sections we will show that both of the standard evolution-strategystyle operators for reals and
the standard genetic algorithm operators can be derived from common “representation-independent”
template operators. The resulting equivalences are shown in table 1. Figure 2 shows graphically
the (phenotypic) effect of the different recombination operators, and figure 3 illustrates the various
mutation operators.

In addition to the need for satisfactory mathematical operator derivations, in the case of continuous
domains there is a need for clearer understanding of the relationship between operators’ effect in a
discrete approximation space and in the underlying continuous space. In particular, it seems desir-
able that operators have well-defined behaviour as the grid spacing shrinks to zero, or at least that we



Evolution strategy term Genetic algorithm term Formal derivation

Local-discrete recombination Uniform crossover RAR�RTR� Real
Local-intermediate recombination BLX-� RAR�R��RTR� Dedekind
Line recombination Line recombination RAR�R��RTR� Isodedekind
n/a N -point crossover � GNX� Real
Gaussian mutation creep mutation BMM� Dedekind or Isodedekind
n/a parameter-wise mutation BMM� Real
n/a bit-wise point mutation n/a

Table 1: The table summarises several of the operators commonly used in genetic algorithms and
evolution strategies (often with different names). Although they may appear to be completely dif-
ferent from one another, they can all be derived as problem-specific forms of generalised problem-
independent operators when particular representations are chosen. The “formal” operators RAR,
RTR, R�, GNX and BMM are described in appendix A, BLX-� is blend crossover with parameter
zero, and the Dedekind and Isodedekind representations are described in sections 5.3 and 5.4 respec-
tively.
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Figure 2: The figure illustrates some of the variety of crossover operators typically used in evolu-
tionary optimisation of real parameters. Here, parentsA andB, each a two-component vector, are
crossed. Parameter-wise uniform crossover (termed discrete recombination in evolution strategies)
generatesA, B, C orD with equal probability. For the formal real representation, RAR, RTR, and
R� are all equivalent to blend crossover with parameter 0 (BLX-�; termed intermediate recombi-
nation in evolution strategies), and generate a child uniformly from the rectangleACBD. BLX-�
(� � �) generates a child uniformly from the rectangleA�C �B�D�. Line recombination generates
children uniformly on the lineAB, and extended line recombination generates children uniformly
on the lineA�B�. Standard (N -point and uniform) operators with traditional binary codings gener-
ate non-localised children which is difficult to show schematically.
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Figure 3: The figure illustrates the effects of instantiating the representation-independent mutation
operator BMM (see appendix A) for traditional binary coding (left), Gray coding (center) and the
Dedekind representation (right). For the first two representations, BMM reduces to standard point
mutation, and in the last case to gaussian creep mutation. For each representation, the real interval
��� �	 has been discretised into 32 points, and the graphs show the probability distribution over pos-
sible offspring when the genome representing the point just right of 0.5 is mutated. The pathological
distributions in the first two cases help explain some of the behaviour observed in figure 1.

understand what is happening if this is not the case. While gray coding has traditionally been put for-
ward as a “smoother” binary representation for reals, the analysis here will show that it shares with
“traditional” binary coding pathological limiting behaviour, while the Dedekind and Isodedekind rep-
resentations have well-behaved natural continuous limits.

3 Representation in evolutionary search

Evolutionary algorithms are based on genetic operators that manipulate chromosomes. These chro-
mosomes arerepresentatives of the structures in the actual search domain, each of which has an asso-
ciated quality measure. When considering the problem of how to represent a search domain in order
to define evolutionary operators, most work has taken one of two approaches. In the first approach,
a fixed “canonical” representation is used, and some mapping between the representation space and
the search space is constructed. In the second approach, operators are designed specifically for each
new search domain, and the problem of representation is largely ignored; conceptually the search op-
erators work directly in the search space. Both of these approaches have significant drawbacks, and
we propose an alternative methodology which captures the strengths of both while avoiding their
weaknesses.

A canonical representation has the advantage that once operators (and hence algorithms) are defined,
they can be applied to any new problem domain—all that is required is to define some mapping from,
say, binary strings to the structures in the new search domain. Examples in which both genetic al-
gorithms, which were first conceived for combinatorial problem domains, and evolution strategies,
developed for continuous domains, have been coerced into other search domains are relatively com-
monplace. However, from the point of view of practical optimisation, this has a gigantic drawback.
Recent work (Wolpert & Macready, 1995; Radcliffe & Surry, 1995) has confirmed what has been
known intuitively for some time—there is no such thing as a free lunch! The representation of the
search domain must capture, in some way, the structure of the objective function in order for there to
be any possibility of out-performing enumeration. Simply transferring algorithms between problems
using a fixed representation space, without explicitly considering the actual representation to be used,



and how structure in the search space is preserved through it, is doomed to failure: no algorithm can
be an effective black-box optimiser.

A problem-specific approach avoids these difficulties, asad hoc operators can be defined to exploit
known characteristics of the problem at hand, or “standard” operators can be modified by forcing
them to make moves that appear “sensible” within the search space. However, this approach has the
clear disadvantage that work is not easily transferable to new search domains.

The authors argue that a middle ground is preferable. A formalism has been developed that allows
an appropriate representation for a given search domain to be generated directly from statements of
belief about the search space. Universal “representation-independent” genetic operators can then be
instantiated with respect to that representation. The theory is based on characterising beliefs about
the structure of a domain of optimisation problems. This characterisation mathematically generates
a representation space and growth function for any given instance of the problem. Once the repre-
sentation has been chosen, problem-specific forms of any of the generalised genetic operators can be
mathematically derived. This is important because many of the representations generated by explic-
itly characterising beliefs about the structure of the search problem turn out to benon-orthogonal (in
which not all combinations of alleles are legal), meaning that “traditional” genetic operators can not
be used. (Consider, for example, trying to useN -point crossover on two permutations: invalid solu-
tions typically result). This framework enables the separation of algorithm and domain-knowledge
to be made completely explicit. Representation-independent search algorithms (constructed with
generalised move operators) can be precisely specified mathematically. For a given search domain,
beliefs about its structure are mathematically formalised to construct a representation. This repre-
sentation is then used to instantiate the generalised algorithm to derive a computationally effective,
problem-specific search strategy.

It is worth noting that the significance of the choice of representation isnot primarily the way in which
real values are physically stored in a digital computer (which is ultimately always as bit patterns),
but rather, the way in which it affects the moves effected in the search space by the chosen genetic
operators. Representation, as discussed here, is simply a mathematical device for deriving domain-
specific operators that incorporate our explicit beliefs about problem structure.

Forma analysis

The approach taken in this paper is based onforma analysis (Radcliffe, 1991a, 1991b, 1994), which
is reviewed in appendix A for readers not already familiar with this material.

The basis of forma analysis is that formae (generalised schemata) capture beliefs about problem
structure—in particular, that they group solutions of related performance—and that the objective
function is tosome degree separable over them (so that recombination and mutation can be effec-
tive). It is then possible to define “representation-independent”operators which manipulate the forma
membership properties of solutions so as to respect our beliefs about the problem structure.

Although previous work has focused primarily on finite search domains, such as combinatorial prob-
lems like the traveling sales-rep problem (Radcliffe & Surry, 1994), neural network topology opti-
misation (Radcliffe, 1993), multi-objective pipeline optimisation (Surryet al., 1995) and so forth,
some initial work was done on continuous domains (Radcliffe, 1991a, 1991b). In this paper we ex-
tend these ideas by considering a limiting sequence of discrete representations. These results are used
to define two formal genetic representations for real-parameter optimisation, which are used to derive
problem-specific forms of the generalised genetic operators.



Algorithms and search strategies

Once genetic operators have been defined independently of any particular representation or problem
domain, it is possible to specify completely problem-independentalgorithms—for example, not only
can we prescribe the selection methodology, but also the exact recombination and mutation opera-
tors the algorithm will use. For any specific problem domainD, we develop a representation using
some characterisation� of our beliefs about its structure, which is used to mathematically derive a
problem-specific version of our algorithm. A well-defined mathematical procedure has been devel-
oped (Surry & Radcliffe, 1996) which, given a problem instanceI � D (over a search spaceS), and
a characterisation� of D, generates a representation spaceC� and a growth functiong� 
 C �� S
suitable for application of any of the representation-independent operators described in appendix A
(see also figure 4).

4 Scaling properties of discretised representations

Previous work has focused on the representation of discrete spaces. However, we seek to extend our
formalism to the case of continuous spaces such as the reals. It is clear that any implementation of
a search algorithm using digital computers will be finite, so that we are forced to consider anap-
proximation of some kind to the actual search space. It is the goal of this section to formalise the
requirements that we might enforce in order to make this approximation meaningful.

First of all, we require that we can (in principle) generate a representation of the continuous search
space to any desired level of accuracy. We then require that the actions of our search operators have
sensible limiting behaviour as we arbitrarily increase the accuracy of our approximate search space.

Consider a problem domainD in which each instanceI is defined on a continuous search spaceS,
typically a subset ofRm. Suppose further that there is a distance metric,d 
 S�S �� R� associated
with S. We wish to generate an approximate representation for any given problem instance in the
domain, to any degree of accuracy. Letn � Z� indicate the degree of accuracy desired, as formalised
below. We suppose that a characterisation,��I� n�, is available, which is an automatic procedure for
generating a finite representationspaceC��I�n� and growth functiong��I�n� (which we will abbreviate
asCn andgn). The growth function maps chromosomes in the representation space into structures
into a finite subsetSn of the search space, as illustrated in figure 4.

We first require that the approximation ofS can be made arbitrarily good. Formally, we require that
for any open subset ofS, there is some level of accuracy above which our approximation always
represents some point in the subset:

�B � S �B open� �n� � Z� 
 n � n� �	 Sn 
 B �� ��
whereSn � gn�Cn� is the subset of the search space currently represented.

Furthermore, we require that any search operators to be used exhibit reasonable limiting behaviour.
Thus, as we change the degree of accuracy of our approximation, we desire that the action of the
operators in the search space does not change radically with respect to the distance function defined
onS.

Any search operator,�, can be viewed as generating a child chromosome from one or more parent
chromosomes and a control parameter selected uniformly from a control set (which provides “ran-
domness”; see Radcliffe, 1994), thus

� 
 Cq �K� �� C�
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Figure 4: Aproblem domain D consists of a set ofproblem instances. Each instanceI defines a
search space S of candidate solutions, afitness function f and a set of objective valuesR. A char-
acterisation � of the domain specifies a set of equivalences among the solutions for any instanceI ,
for any given accuracyn. These equivalences induce arepresentation made up of arepresentation
space C��I�n� (of chromosomes) and agrowth function g��I�n� mapping chromosomes to a subset
Sn of S. A chromosomex is a string ofalleles, each of which indicates thatx satisfies a particu-
lar equivalence onS. Algorithms can be completely specified by their action on the alleles of these
generalised chromosomes, making them totally independent of the problem domain itself.

whereK� is the set of possible control parameters (e.g. cross points, mutation masks, etc.), andq is
the arity of the operator (soq � � for a mutation operator,q � � for a typical recombination operator,
etc.). We can define an equivalent probabilistic form of�, which samples uniformly from the control
set:

���x�� � � � � xq�
�

���x�� � � � � xq � �� 
 � � U�K���

In order to restrict the limiting behaviour of such an operator, we require that its action on chromo-
somes representing nearly the same point in the search space tends to be the same. Formally,

�� � � �f�ai� xi�gqi	� �ai � S� xi � C� �B � S �B open��	� p� � � �n� � Z� 


n � n�� max
��i�q

d�gn�xi�� ai� 
 	 �	 jP �gn����x�� x�� � � � � xq�� � B�� p�j 
 ��

Thus the probability that the operator generates a representative of a point contained in any fixed open
subset (B) of S must converge to a fixed value (p�) as the operands (thexi) converge to representa-
tives of any fixed set of points (theai) in S.



Binomial minimal mutation

These definitions prompt us to redefine the binomial minimal mutation operator, BMM (see appendix
A). As originally presented (Radcliffe & Surry, 1994), the operator made a number of minimal mu-
tations chosen from a binomial distribution parameterised by the mutation probability,pm, and the
number of alleles in the genome,n. In order to preserve its behaviour asn � �, we advocate
that the binomial distribution be parameterised by aneffective chromosome length,�n instead of the
actual lengthn. This effective length should be chosen so that a sequence of�n randomly chosen
minimal mutations randomises the chromosome. Typically�n � n, but when the representation is
highly non-orthogonal (so that the likelihood of “undoing” previous minimal mutations is high), we
may have�n � n. For example, with the Dedekind representation introduced below, we find that
�n � n�.

5 Representations for real-parameter optimisation

In this section, we consider a number of different representations for discretised real-parameter op-
timisation. We first discuss traditional integer-coding and the related Gray coding, and then go on to
develop two new representations and their associated operators based on formally characterising our
beliefs about the structure of the search domain.

In generic real-parameter optimisation, the most obvious/general belief we would like a representa-
tion to capture is some form of Lipschitz condition (also known as H¨older-continuity)—that small
changes in the parameters lead to small changes in the observed function values. Thus, neighbour-
ing solutions in the search space are expected to have related performance. By capturing this idea
on an “axis-by-axis” (parameter by parameter) basis, we develop the Dedekind representation, and
by considering all possible axis orientations simultaneously we derive the Isodedekind representa-
tion. The operators we derive from these representations have been commonly used in evolution
strategies, but are now seen to be formally equivalent to operators used in completely different dis-
crete/combinatorial domains.

Traditional approaches to binary coding of real parameters is based (if on any explicit foundation) on
the belief that more schemata are better than fewer (the notion of implicit parallelism, giving rise to
the principle of minimal alphabets). This has repeatedly been shown to be little more than statistical
sleight of hand: one sample is one sample, not many. There is also perhaps some idea that because
binary coding “chops up the search space” in many different ways, it lets the algorithm discover use-
ful patterns (Goldberg, 1989; Holland, 1975) but research has shown that is only true if the problem
happens to coincide with the particular scaling and location captured in the binary coding. For ex-
ample, Eshelman & Schaffer (1992) found that simply rescaling or shifting the coordinate axes could
dramatically impact performance. (It is reasonable, however, to speculate about constructing a for-
mal representation based on beliefs about periodicity in the objective function—or, indeed, on any
other feature thought to be relevant—but this has not as yet been achieved, although an early attempt
was made by Radcliffe, 1991a.)



5.1 Approximating the search domain

In evolutionary real-parameter optimisation, we face the problem of representing a discrete approxi-
mation to a continuous search space. Here the search space is taken to be a product of real intervals,

S ��
mY
i	�

��i� �i	 � Rm�

We consider a discretised approximation to the search space generated by the intersection points of
a uniform lattice of planes along each co-ordinate axis, namely:

Sn ��
mY
i	�

f�i� �i �
i�n� �i � �
i�n� � � � � �ig 
 S

where


i�n �
�i � �i
n� �

�

It is thus clear that by using a simple linear transformation, it is sufficient to consider the caseSn �
Zmn . (For the traditional binary codings, we can, for simplicity, restrictn to powers of 2, but this is
not a significant restriction.)

We begin by considering the casem � � (in which we represent a single parameter), and examine the
traditional binary representations as well as developing theDedekind representation. In section 5.4,
we show that building up to higher dimensional search spaces is straightforward, and also introduce
the alternativeIsodedekind representation.

5.2 Traditional genetic algorithm representations

We first examine the traditional methods for coercing a genetic algorithm into a real-parameter op-
timisation domain. The two standard and variously-championed approaches are traditional integer
coding, in which an integer is directly coded in its base 2 representation, and Gray coding, which
alleviates one of the perceived problems with the first approach. We present formal definitions of the
representations in forma analysis terms, in order that we will later be able to derive forms of gener-
alised genetic operators and to examine their limiting behaviour as we approximate the continuous
space more closely.

We will see that neither representation is based on explicitly characterising any particular structure
of the underlying optimisation problem, and that this leads to pathological limiting behaviour.

Traditional integer coding

A common approach to representingn adjacent integer values is to usek � dlog� ne bits. When
such an approach is taken, there is a choice, in principle, of�k� mappings between the�k values
and the�k strings used to represent them. In practice, almost all such work uses either “traditional”
binary coding, in which theith value is represented by the binary numberi, or so-calledGray coding
(explained below).

With traditional integer-coding, we can write the formal equivalence relations generating the repre-
sentation as follows:


i�x� y� �

�
�� if x� �i � y � �i�
�� otherwise.



Value Binary � � �� Gray � � �� Dedekind ��
 ��� ��
 
 ���
0 000 - � - 000 - � - 0000000 � - -
1 001 � � � 001 � � � 0000001 � - -
2 010 - - - 011 � - - 0000011 � � �
3 011 � - - 010 - - - 0000111 � � �
4 100 - � - 110 - - - 0001111 � � �
5 101 � � � 111 � - - 0011111 - � -
6 110 - - - 101 � � � 0111111 - � -
7 111 � - - 100 - � - 1111111 - � -

Table 2: The figure shows the way in which elements ofZn (used to approximate a real-valued inter-
val) are represented using traditional binary coding, Gray coding, and the Dedekind representation
developed here. Several example formae are illustrated in each case. Note that in the first two cases,
formae correspond to schemata and are global in extent (including intersections), while in the third
case, formae correspond to intervals on the line and encapsulate the notion of locality, presumably
important in real optimisation. These representations are used to mathematically derive genetic op-
erators suitable for computational implementation—it isnot necessary (or even feasible, in the case
of Dedekind) to store solutions in the forms shown here.

wherei � f�� �� � � � � k��g and� denotes bitwise-and. These equivalence relations induce the basic
formae (alleles)��� � �

�
� � � � � � �

�
i � �

�
i � � � � � �

�
k��� �

�
k�� which we can identify exactly with schemata

��i � � � � � � � �
��i � � � � � � � �

with the 0 or 1 in theith position. It is clear that through intersections of these basic formae we can
build all higher-order formae (again, exactly the higher-order schemata), and can identify individual
solutions by noting the equivalence class to which they belong for each of the basic equivalence re-
lations. Examples of this coding indicating the membership patterns of several formae are shown in
table 2. Qualitatively we see that formae are neither local nor purely periodic in extent. Further, it is
clear that as we increase the number of formae in order to approximateS more and more accurately,
there is no clear notion of the limiting properties of the formae. This will be made evident in section
5.6 when we examine the limiting behaviour of the genetic operators derived from this representa-
tion.

Gray coding

The principal motivation for considering Gray coding is the perceived problem of Hamming Cliffs
with traditional integer coding. An example of a Hamming cliff is the transition from 7 to 8 in the
traditional coding, where a relatively large number of bits change value with a small step in the search
space (e.g.� � � ���� to � � � ����). The attraction of Gray coding (Caruana & Schaffer, 1988) is that
the strings representing adjacent values always differ by exactly one bit. There are numerous possible
mappings of the integers to binary strings that have this adjacency property, but the most commonly
used one codes the integerx as the (binary) value ofx� bx��c where� is the bitwise exclusive-or
operator. If we write the binary value ofx (the traditional integer coding) asbk�� � � � b�b� and the
Gray-coded representation ofi asgk�� � � � g�g� then we have the relationships

gi � bi�� � bi



and
bi � bi�� � gi�

which allow conversion from one form to the other (takingbk � �).

These relationships allow us to write the equivalence relations which define the Gray-coding repre-
sentation:


i�x� y� �

�
�� if �x� bx��c�� �i � �y � by��c�� �i�
�� otherwise.

wherei � f�� �� � � � � k� �g. As with traditional integer coding, the formae can be exactly identified
with (now Gray-coded) schemata. An example of the coding scheme along with the members of
several formae are shown in table 2. Although these formae never contain ‘singleton’ solutions, it is
still clear that they are still highly non-local in extent. It will also be shown that the limiting properties
of the genetic operators (as the level of approximation is improved) are no better than the traditional
coding.

5.3 Representations that “capture” continuity

The Dedekind representation

We seek to define a representation forZn based on our beliefs about the structure of the problems
we will be attacking. For the wide class of real-parameter optimisation problems, perhaps the sim-
plest belief we might hold is some notion of continuity. That is, we believe that small changes in the
parameter values will lead to small changes in the objective function. In evolution strategies, this
belief is termedthe principle of strong causality, and in real analysis functions with such a property
are termedHölder continuous or Lipschitz.

In order to quantify this belief, we seek to characterise groups of solutions (formae) with related per-
formance. To do this, we will define equivalence relations that capture locality, based on the idea of
Dedekind cuts:

A Dedekind cut is a partitioning of the rational numbers into two non-empty sets, such
that all the members of one are less than all those of the other. For example, the positive
irrationals can be defined as Dedekind cuts on the positive rationals
(e.g.

p
�
�

�hfx � Q�
�� x� 
 �g� fx � Q�

�� x� � �gi).

Thus the basic equivalence relations we define onZn are cuts


i�x� y� �

�
�� if x� y � i or x� y 
 i�
�� otherwise,

wherei � f�� � � � � n� �g. These equivalence relations induce half-space equivalence classes of the
following type:

��i � f�� �� � � � � i� �g�
��i � fi� i� �� � � � � n� �g�

It is easy to see that intersections of these basic formae result in sets defining closed intervals, as illus-
trated in table 2. Note that, formally, this representationhasn��highly non-orthogonal(constrained)
binary genes coding a single approximated parameter, instead of thek � dlog� ne orthogonal genes



of traditional integer coding or Gray coding. However, we will see that the operators we derive from
this representation and their limiting behaviour as we increase the level of approximation (n��)
are much more natural with our new definitions.

While it is somewhat ironic that this formalism of the real representation utilises binary genes, we
emphasise once again that we donot propose to store or manipulate solutions in this form, but only
to apply our design principles to develop and analyse our genetic operators.

5.4 Extending the representations to multiple parameters

It is a simple matter to extend any of the representations to higher dimensions by forming products
of the one-dimensional equivalence relations. For example, in a two-dimensional search space, ap-
proximated byZn � Zn, the basic equivalence relations for the Dedekind representation are of the
form


ij�x� y� � 
i�x�� y��� 
j�x�� y�� �

��
�

�� if �x�� y� � i or x�� y� 
 i�
and�x�� y� � j or x�� y� 
 j��

�� otherwise,

with equivalence classes of the form

���ij � ��i � ��j � f��� ��� � � � � ��� j � ��� � � � � �i� �� ��� � � � � �i� �� j � ��g�
���ij � ��i � ��j � f�i� ��� � � � � �i� j � ��� � � � � �n� �� ��� � � � � �n� �� j � ��g�
���ij � ��i � ��j � f��� j�� � � � � ��� n� ��� � � � � �i� �� j�� � � � � �i� �� n� ��g�
���ij � ��i � ��j � f�i� j�� � � � � �i� n� ��� � � � � �n� �� j�� � � � � �n� �� n� ��g�

The traditional binary and Gray codings can be similarly extended.

The Isodedekind representation

An alternative approach to extending the Dedekind representation to multiple parameters is to define
new equivalence relations. Because it seems somewhat artificial to characterise locality only along
the axis directions, we might think of devising a characterisation to capture locality more generally.
Thus, we could define basic equivalence relations which partitionZmn using cut planes which have
arbitrary orientation. This would require our conceptual chromosome to have alleles indicating on
which side of a series of cuts it fell in each possible direction from the origin. Thus in the limiting
case, the chromosome consists of a continuous infinity of continuous infinities of genes! We do not
exhibit a precise discrete formulation here for reasons of space, but it is straightforward to visualise
the limiting forms that the generalised operators take in such a case (see for example figure 5). The
Isodedekind representation demonstrates convincingly that even extremely non-orthogonal charac-
terisations can be used successfully.

5.5 Forma variance calculations

One measure which indicates how well formae succeed in grouping together solutions of related
fitness is mean forma variance. By generating random formae of a particular size and measuring
the fitness variance within them, we can estimate the mean variance for formae of a given size.
This was shown to be a good qualitative indicator of relative algorithmic performance (Radcliffe &
Surry, 1994).



For the Dedekind and Isodedekind representation, all formae can be represented as convex simplices
in Rm. For illustrative purposes, we consider the one-dimensional case in which formae become
intervals (although it is not difficult to extend the results to higher dimensions). It is then a simple
matter to write down an expression for the fitness variance of a forma (interval) of size� , centered
atx � t, with objective functionf�x�. Namely,

���t� �� �
�

�

Z t����

t����

�f�x�� �f�t� ����dx�

where

�f�t� �� �
�

�

Z t����

t����

f�x�dx�

It is straightforward to show that requiring the forma variance to decrease to zero as forma size (� )
decreases is closely related to making a Lipschitz assumption on the objective function.

For instance, assume thatf is Lipschitz over an interval��� �	, that is,

x� y � ��� �	 �	 jf�x�� f�y�j 
 �jx� yj

for some� � R�. Now consider any forma of size� contained in��� �	. By the mean value theorem,
we know that�f�t� �� � f�c� for somec � �t� ���� t� ���	. We then have,

���t� �� 

�

�

Z t����

t����

���x� c���dx

�
��

��
�x� c��

����
t����

t����

� ����

�

Conversely, it is trivial to show that iff is nowhere Lipschitz on��� �	, that

���t� �� � ����

��

Thus the notion that formae should group together solutions of related fitness has been shown to be
closely linked to the characterisations on which we based the construction of the Dedekind and Isod-
edekind representations—namely that the functions of interest were in some sense smooth (satisfying
a Lipschitz condition, or more loosely the principle of strong causality).

For the traditional integer coding and Gray codings used with genetic algorithms, there is no analo-
gous limiting behaviour that can be extracted. We might speculate on some relationship to periodic
behaviour of the function, but it is not simply that. It has been “discovered” several times that simply
by shifting the origin or rescaling the axes, the behaviour of algorithms based on these representation
can change radically. This is clearly very undesirable behaviour.

Fundamentally, we argue that this stems from the lack of a principled foundation for the traditional
representations—they do not encapsulate particular beliefs about the problem domains of interest.
In fact, many workers have taken the diametrically opposite approach of trying to discover what it is



Figure 5: The figure illustrates two problem-specific forms of the random respectful recombina-
tion (R�) operator for a two-dimensional real-parameter optimisation problem. (a) On the left, the
Dedekind representation is defined by cut formae along each axis. Since R� requires that the child
be a member of all formae to which both parents belong, the child must lie within the hypercube
(square here) with its two parents at opposite vertices. Hence R� reduces to BLX-� in this case. (b)
On the right, the Isodedekind representation is defined by cut formae in arbitrary directions. Thus R�

requires, in the limit, that the child lies on the line segment bounded by the two parents, so that R�

is equivalent to line recombination in this case. It is also instructive to compare algorithms based on
these different representations which incorporate R�—see figure 1.

that these representationsare characterising, for instance by constructing specialised functions over
the integers which lead the algorithms in particular directions. While such research may be intrin-
sically interesting, it is far from clear that it bears on the problem of how algorithms based on these
representations behave for “real” functions.

5.6 Derivation of operators

It is now straightforward to derive forms of the generalised genetic operators described in appendix
A. The derivations are summarised in table 1. These operators can then be used to instantiate a fixed
representation-independent algorithm for each of the four representations presented here. This is il-
lustrated for a simple objective function in figure 1.

For the traditional binary and Gray codings, the generalised operators reduce to “standard” forms,
since the representations are orthogonal (all combination of allele values are legal). Thus, RAR,
RTR and R� reduce to uniform crossover, GNX reduces toN -point crossover, and BMM reduces
to bitwise point mutation.

For the Dedekind representation, it is clear that both R� and RTR require that the child be uniformly
selected to lie in the box determined by the parents (see also figure 5). Thus, in one dimension, the
crossover operatorX 
 Zn�Zn� ��� �� �� Zn acting on parentsx andy (without loss of generality,
x 
 y) and control parameter� � ��� �� results in the childX�x� y� �� � x�b��y�x���c. It is clear
that in the limit ofn � �, this is equivalent to BLX-� as defined by Eshelman & Schaffer (1992);
see figure 2. For this representation, it is not difficult to see that RAR is also equivalent to BLX-� (it
is easy to show that the child must lie in the interval defined by the parents, and only slightly more
difficult to demonstrate that the likelihood is uniform over the interval).

For the Isodedekind representation, R� and RTR reduce to line recombination as shown in figure 5,
and RAR simply requires that we are able to generate any point in the search space.



Turning to mutation, if we analyse our representation-independent mutation operator BMM with the
Dedekind representation, it is clear that a minimal mutation involves flipping the value of one of
the two bits forming the transition from ones to zeros in the genome. Thus a fixed-length sequence
of minimal mutations is equivalent to a random walk away from the original transition point. We
will show that this reduces in the limit ofn � � to standard gaussian creep mutation with width
parameterised by the gene-wise mutation probability.

Proof: Assume that each parameter is represented byn genes in the Dedekind representation. Con-
sider the action of BMM on a single parameter (as it is clear that genes in different parameters are
orthogonal). Given a gene-wise mutation ratepm, and an effective chromosome length�n (which
we will find must be proportional ton�), we make a binomial numbers of minimal mutations, where
s is chosen from the distributionS � B��n� pm�. Now, we know that the binomial distribution
B�n� p� is asymptotically approximated by the normal distributionN�np�

p
np��� p�� provided

that
p
np��� p� � np. In our case, we takepm fixed, and�n � � asn � � so thatS is

asymptotically approximated byS � N��npm�
p
�npm��� pm��. Now, each minimal mutation

results in a step of size
 � L�n to the left or right of the current value, whereL is the length of
the interval in which the parameter lies. Thus once we have chosen a number of stepss, distributed
according toS � N��npm�

p
�npm��� pm�� we perform a random walk with step length
, so

that the final displacementx is distributed conditionally ons, according to the normal distribution
X jS � N���

p
sL�n�. Further, we can thus write the unconditional p.d.f. forX as:

p�x� �

Z �

��

p�xjs�p�s�ds�

Consider now the moment-generating function forX , mX�t�, given by:

mX�t� � E�etx� �

Z �

��

Z �

��

p�xjs�p�s�etxdsdx

�

Z �

��

p�s�

Z �

��

p�xjs�etxdxds

�

Z �

��

p�s�mXjS�t�ds�

Now, sinceX jS � N���
p
sL�n�, a normal distribution, we know thatmXjS�t� � exp��t �

�
p
sL�n��t����, which yields

mX�t� �

Z �

��

p�s� exp

�
s

�

�
Lt

n

��	
ds

� mS

�
�

�

�
Lt

n

��	
�

Finally, sinceS � N��npm�
p
�npm��� pm��we havemS�t� � exp��npmt��npm���pm�t����,

so that

mX�t� � exp

�
pmL

��n
�n�

t� �
pm��� pm�L��n

�n�
t�
�
�

We thus choose our length scale�n � n� to make the limit finite, and see thatlimn��mX�t� �
exp�pmL

�t����. This is simply the moment generating function forN���
p
pmL� so the final dis-

placementX must have the identical distribution. Thus BMM instantiated for the Dedekind repre-
sentation is that operator which adds gaussian noise with width

p
p
m
L to each parameter.



Note that for the Isodedekind representation a sequence of minimal mutations involves a random
walk with steps taken in arbitrary directions inRm. Thus BMM is likely to be equivalent to Gaussian
mutation, but the precise scaling factors have not yet been derived.

6 Discussion

This paper has presented formal constructions for two genetic representations for real-parameter op-
timisation based on characterising the notion of locality—the Dedekind and Isodedekind representa-
tions. Generalised genetic operators are shown to reduce in these representations to standard forms,
namely blend crossover, line recombination and gaussian creep mutation which are widely used in
practice. Both of these representations are highly non-orthogonal, but this is seen not to present dif-
ficulties. Analysis of the limiting behaviour of discrete approximations to a continuous search space
has shown that the more traditional binary and Gray codings have pathological behaviour. This is il-
lustrated qualitatively when a fixed algorithm is instantiated for all four representations and radically
different behaviour is observed (figure 1).

A Forma analysis

Holland (1975) identified subsets of a search space of strings usingschemata—sets of strings that
share certain gene values. His schema theorem shows how theobserved fitness of any schema in a
population can be used to bound theexpected instantiation of the same schema in the next genera-
tion, under the action of proportional selection. Several authors have generalised the idea of schema
and shown that the theorem applies to arbitrary subsets of the search space, provided that suitable
disruption coefficients are chosen (Radcliffe, 1991a; Vose & Liepins, 1991).

In Radcliffe’s work, subsets of the search space,S, are identified asformae. Typically, the formae are
defined as the equivalence classes induced by a set of equivalence relations,�. (An equivalence re-
lation
 
 S�S �� f�� �g can be thought of as a function which returns 1 if a given pair of solutions
are “equivalent” and 0 otherwise.) Any solution can then be identified by specifying the equivalence
class to which it belongs for each of the equivalence relations. Loosely speaking, we identify genes
with a set of basic equivalence relations (from which any member of� can be constructed)and alleles
with the corresponding equivalence classes. For instance, “same hair colour” and “same eye colour”
might be two basic equivalence relations in�, which would induce the formae “red hair”, “brown
hair”, “blue eyes”, etc. Higher order formae are then constructed by intersection, e.g. “brown hair
and blue eyes”.

The selection of an appropriate set of equivalence relations for a particular class of problem is an open
problem. We assume that domain knowledgecharacterised by an algorithmic procedure which gen-
erates the required equivalence classes for any given problem instance. For example, in the travelling
sales-rep problem, we might reasonably believe that tours sharing any given edge will have related
performance (indeed this is clear in this case since the length of a tour is simply the sum of its edge
lengths). Thus we might propose a characterisation which generates formae based on equivalence
relations of the form ’has edgexy’ (although other characterisations are also possible; see Radcliffe
& Surry, 1994).

However, several ideas have been previously proposed (Radcliffe, 1991a) which summarise the
way formae should partition the search space. These permit the construction of representation-
independent operators that manipulate solutions in effective ways.



� Correlation within formae. The formae should group together solutions of related fitness. One
measure of this is the mean fitness variance over formae of a given size. This has been mea-
sured experimentally for four representations in the travelling sales-rep problem and shown to
correlate well with performance (Radcliffe & Surry, 1994).

� Minimal degeneracy�. The number of genomes representing each member ofS should be small.

� Computability. It must be possible to efficiently exhibit members of any given formae computa-
tionally (clearly equivalence relations based on tour length in the TSP could be mathematically
specified, but it would be computationally infeasible to generate members of particular formae).
These restrictions have not been investigated in depth, but have not been a problem with those
representations investigated to date.

Representation-independent operators

The way in which formae are thought to group solutions of related performance suggests severalde-
sign principles for constructing genetic operators. Such operators can be precisely defined indepen-
dently of any particular representation, by specifying how they manipulate the formae-membership
properties of their operand(s). For any given representation, we can use the definition of the operators
to formally derive a problem-specific version of that operator. This leads in some cases to previously
known operators in a given search domain, but in other cases leads to new insights about what form
of recombination or mutation might be applicable to a given problem domain. The generalised op-
erators are particularly relevant to non-orthogonal representations (in which not all combinations of
alleles are valid), which often arise when the problem characterisation is based on beliefs which are
not completely compatible. A number of these principles and related operators are summarised be-
low.

Respect Respect requires that children are members of all formae to which both their parents belong.
For example, if there were equivalence relations about hair colour and eye colour in�, then if
both parents had red hair and green eyes, so should all children produced byX .

More formally, a recombination operatorX 
 S � S � KX �� S (whereKX is a set of
control parameters such as cross-points or crossover masks) is said torespect the set of formae
� generated by� iff

�� � � �a � � �b � � �� � KX 
 X�a� b� �� � ��

Random respectful recombination (R�) is defined as that operator which selects a child uni-
formly at random from the set of all solutions which share all characteristics possessed by both
parents (theirsimilarity set).

Transmission A recombination operator is said to bestrictly transmitting if every child it produces
is equivalent to one of its parents under each of the basic equivalence relations (loosely, every
gene is set to an allele which is taken from one or other parent). Thus, if one parent had red hair
and the other had brown hair, then transmission would require that the child had either red or
brown hair.

�The termredundancy has previously been used to mean the same thing, but we now urge that redundancy
should be reserved for the situation in which chromosomes contain more information than strictly necessary to
specify the solution they represent.



Therandom transmitting recombination (RTR) operator is defined as that operator which selects
a child uniformly at random from the set of all solutions belonging only to basic formae present
in either of the parents (theirdynastic span).

Assortment Assortment requires that a recombinationoperator be capable of generating a child with
any compatible characteristics taken from the two parents. In our example above, if one parent
had green eyes and the other had red hair, and if those two characteristics are compatible, as-
sortment would require that we could generate a child with green eyes and red hair.

Formally, a recombination operator is said toproperly assort the formae generated by� iff

���� �� � � ��� 
 �� �� �� �a� � �� �a� � �� �� � KX 
 X�a�� a�� �� � �� 
 ���

Therandom assorting recombination operator (RAR), a generalised form of uniform crossover,
has been previously defined (Radcliffe, 1992). It proceeds by placing all alleles from both par-
ents in a conceptual bag (possibly with different weights), and then repeatedly draws out alleles
for insertion into the child, discarding them if they are incompatible with those already there.
If the bag empties before the child is complete, which can happen if not all combinations of
gene values are allowed (so that the representation isnon-orthogonal) remaining genes are set
to random values that are compatible with those genes already set.

A generalisedN -point crossover, GNX, has also been proposed (Radcliffe & Surry, 1994). This
proceeds in much the same way as standardN -point crossover, dividing the two parents with
N cut-points, and then using genetic material from alternating segments. The alleles within
each segment are tested in a random order for inclusion in the child, and any remaining gaps are
patched by randomly selecting compatible alleles first from the unused alleles in the parents,
and then from all possible alleles.

Ergodicity This demands that we select operators such that it is possible to move from any location
in the search space to any other by their repeated action. (Typically a standard mutation operator
is sufficient.)

Binomial minimal mutation, BMM, a generalisation of standard point-wise mutation, has been
proposed in Radcliffe & Surry (1994). Minimal mutations are defined to be those moves which
change the fewest possible number of alleles in a solution (in non-orthogonal representations it
may be necessary to change more than one allele at a time to maintain legality). BMM performs
a binomially-distributednumber (parameterised by the genome length and a gene-wise mutation
probability) of minimal mutations, and does not forbid mutations which ‘undo’ previous ones.

Work is also ongoing which investigates the ramifications of a principle ofdisdain in which formae
non-membership is used to compare parent solutions. This leads to the development of search oper-
ators such as directed mutation and simplex-like recombination.
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