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Abstract

This paper describes the application of stochastic search tech-
niguesto the production scheduling of agroup of linked oil and gas
fields. The goal was the maximisation of total net present value
and a genetic algorithm using problem-specific crossover opera-
tors was particularly successful in this respect.

Introduction

Reservoir engineers must decide upon a*“best” management strat-
egy for the exploitation of each petroleum resource, typically the
strategy which will maximiseeconomicreturn. Inparticular, apro-
duction schedule, specifying rates of extraction over the lifetime
of the reservoir(s), must be chosen. From this, decisions about
the construction of processing facilities and pipelines will follow.
A quantitative approach to the search for the “best” production
schedulerequiresthe construction of amathematical model, which
must capture enough characteristics of the reservoir(s) to predict
the costs and benefits of any given schedule.

Even when a single independent field is under consideration,
finding the “best” schedule can be anon-trivial problem, asal but
the simplest modelsarelikely to be non-linear and contain discon-
tinuities. BP has a number of multi-field potential developments
world-wide. In such cases, the problem is more difficult still. The
total number of productionratesisof course proportionately larger,
but extracomplexity arisesfrom theinter-dependenceof thefields.

*TJH and NJR were at Edinburgh Parallel Computing Centre, University of Ed-
inburgh, while this work was carried out.

There are extra degrees of freedom, namely the respective timing
of each field, and in addition the costs associated with each field
depend on the sum of the production rates from some or al of the
other fields.

If possible, the reservoir engineer will also wish to ensure ro-
bustness of the choice of extraction strategy in the presence of un-
certainty in the economic model—the most obvious source of un-
certainty in this case being the reservoir characterisations.

This paper describes how severa techniques—genetic algo-
rithmsin parti cular—were used to search the space of possible pro-
duction schedules based on an indicative data set from one multi-
field devel opment. The techniques show potential waysto achieve
significant increases in net present value, which were consistent
with traditional discrete analysis.

The NPV model

The NPV model in question is a non-linear function of a set of
real variables{z; . }. Eachz; ; representsthetarget annual average
productionrate for the primary stream of field i inyear ¢. (Depend-
ing on the field, the primary stream is either oil or gas). If uncer-
tainty is neglected, the model assumes these rates to be the actual
achieved rates. (If, however, uncertainty is taken into account, the
actual rateswill in general differ from the target rates.) The model
has np fields, and the accounting period beginsin year 1. Years
1 to 3 contain only capital outlay and no production, after which
each field has a maximum productive life of ny years. The total
number of independent variables z; ; isthereforenp x ny, which
in the particular version of the model used for this study, was over
200.

The objective function When performing an optimisation the
objective function, when presented with a solution, assignsto it a
numerical value which reflects its quality. In the present case, the
objective function comprises the model which predicts the NPV
of the group of fields, on the basis of the production schedule de-
scribed by theinput variables {z; + }.

First consider the NPV for onefield in the group. If r isthedis-
count rate,



ny +3 1

NPV = ; W{ revenue,
—drilling-costs, — capital-costs,
—operating-costs, — fixed-costs; }. (1)

The revenue is the sum of the three stream revenues—for oil,
gas and natural gas liquids. The computation of the stream pro-
file is the most compute-intensive part of the model—the annual
production rate for each non-primary stream is computed from the
primary stream rates {xz; ; }, and because this relationship is non-
linear, the revenue is non-linear in the {z; ,}. The drilling costs
depend on the number of wells required to supply the target rate,
and are therefore a function of the maximum primary stream rate
over the course of extraction. The model includes a swing factor
on these maximal rates.

Thusfar, each field isindependent of other fields. However, the
fieldsinthegroup arelinked, and facilities at those fields which act
as nodes must handle the production from client fields (as well as
from the field itself). The capital and operating costs for afield i
are proportiona to the maximum rate which the field will haveto
handle, and accordingly they contain terms of the form:

m?x{ Z Tt}

je{fields serviced by ¢}

For the purpose of calculating these costs, an extra conceptual
field isintroduced to represent the onshorefacilities serving all the
fields. The spend on the drilling and capital costs occursin the 3
years prior to the start of production for each field. The operat-
ing costs for each field apply from the start of production (the start
year) until abandonment (theend year). Thestart and endyearsare
defined interms of non-zero z; ;, which makesthe costs discontin-
uousinthe {z;}.

Theconstraints For simplicity, each field is modelled as a sim-
ple “tank” —its behaviour is assumed to be governed by just two
parameters. These are the deliverability—the relative “ease” by
which the primary stream can be extracted—and the reserve, the
total amount of the primary stream hydrocarboninthefield. These
parameters were estimated from reservoir simulations. The {z; ; }
obey two types of constraint:

Productivity constraints. The “tank” model constrains produc-
tionfor agivenfield in any year to be less than (or equal to) acer-
tain constant fraction of the remaining reserve. (It follows that if
extraction were maximised, the schedule for each field would fol-
low an exponential decay curve.)

Sequencing constraints.  Each field must start operation before
(or at the same time as) any fields which it serves. (The corre-
sponding end year constraints are not treated explicitly, rather the
objective function “repairs’ violations as part of evaluation.)

“Good” schedules Whether for asinglefield or agroup of fields,
“good” production schedules—those with a high NPv—tend to
follow an overal “plateau-with-tail” shape. Extraction is lim-
ited initialy by the cost of building facilities to handle the flow
(the plateau phase), and then by the productivity constraints (the
tail phase), until abandonment. A typical schedule of this form
can be seen in figure 5. When choosing a production schedule,
the most basic feature to consider is therefore the total primary
stream plateau rate—a high plateau provides early revenue, but a
lower plateau reduces costs. However, within this general pattern,
the NPV is still quite strongly dependent on the “phasing” of the
start years and the respectivefield abandonment dates (particul arly
where delayed effects, such as gas re-injection, apply).

Optimisation of NPV with search techniques

Stochastic search and optimisation Theideal goal of optimisa-
tion is to find the solution that has the highest value of the objec-
tive function—a global optimum—in the present case, a produc-
tion schedule that maximises the NPV. However, unless the form
of the objective functionis particularly simple, or the search space
(theset of all valid production schedules, inthiscase) isvery small,
it isgenerally impossible to construct optimisation techniquesthat
are guaranteed to find aglobal optimum. For this reason, most op-
timisation problemsaretackled using search techniques, which ex-
plore the search space but do not guarantee to find a global opti-
mum. A local optimum isasolutionwhichisbetter than (or at least
as good as) every solution in its “neighbourhood” .

Search techniques can be considered as automated and ratio-
nalised versions of “what-if” analysis, in which anumerical model
is run repeatedly while the values of the underlying variables are
modified. Most search techniquesbegin by choosing one point (so-
lution) from the search space as a starting point —the choice may
be random or informed. Thereafter, the process typically involves
mai ntaining anotion of asinglecurrent point. Thesearch normally
proceeds by repeatedly generating a trial move within the search
space, by modifying the current point through the application of a
move operator. The new point is then evaluated and a decisionis
made about whether to replace the current point with the new point.
The“move’ operator used may be either deterministic or stochas-
tic. Inthe simplest case, the“move” to the new point is made only
if it isbetter than (or asgood as) the current poi nt—such techniques
are known generically as hill-climbers.

In real-world optimisation, one often settles for the best local
optimum that one can find. Good search techniques normally
produce near-optimal solutions relatively quickly. The process
of search can be enlightening in itself—on real-world problems,
stochastic search techniques tend to produce an “ensemble” of
good solutions rather than a single “best”, and this often gives
some understanding of the variety of good solutions available.

Optimisation of NPV by simulated annealing Simulated an-
nealing (Kirkpatrick et al.) isatechniquecommonly used for high-



dimensional, possibly discontinuous, optimisation problems. Sim-
ulated annealing takes its inspiration from a cooling crystal, in
which the molecules align themselves provided that the cooling is
sufficiently dlow. In this case E, the total energy of the crystal,
is the objective function, minimised by the formation of a perfect
crystal.

A classical simulated annealing algorithm followsthe pattern of
a stochastic search described in the previous section. If a move
improves the objective function, it is accepted and replaces the
current solution. If the move worsens the objective function by
AE > 0, it isaccepted with probability e~ whereT is apa
rameter called “temperature”.

The temperature T is set to a high value at the start of a run
and slowly reduced during its course according to some sched-
ule (hence “annealing”). Theideais that the system has the free-
domto explorecoarsefeatures (such asthe basinsof different local
optima) early on, but later becomes something closer to a classic
“hill-climbing” agorithm to refine the search. As with any opti-
misation problem, the best solution encountered so far is always
separately recorded.

Location of a global optimum is statistically guaranteed, pro-
vided that the temperature reductions are “ sufficiently small” and
that at each temperature, the number of moves is “sufficiently
large” for the system to reach “equilibrium”, though thisis rather
hard to measure in practice and may take a (very) long time. Se-
lecting the proper choice of annealing schedule is a large, active
field of research. In practice, better solutions can often be obtained
in finite time by not permitting equilibration (see the discussion of
“quenching” etc. by Ingber).

For the production scheduling problem in hand, E = —NPV
and two move operators were used:

MoveSt art Year: This produced a shift in the production
schedule, for one randomly-selected field, by plus or minus one
year (subject to sequencing constraints).

MoveRat e: Thisresulted in anew choice of the primary stream
rate, for one field and one year, uniformly chosen within a band
centred around the current rate. The width of the band was pro-
portional to aparameter « € [0, 1], up to amaximum of thewhole
valid range.

Optimisation of NPV by sequential quadratic programming
Sequentia quadratic programming (used herein theform of NAG
routine EO4UCF) is a deterministic optimisation technique based
on calculus. Itisessentially a*“hill-climber”, moving at each step
in the direction that it believes to be the most direct route “up-
hill”, subject to the constraints (which may be non-linear). It there-
foregenerally findsalocal optimum, usually “near” to the starting-
point. It can, however, havedifficulty if thereare discontinuitiesin
the objective function.

Optimisation of NPV
by hybrid smulated annealing techniques Users of stochas-
tic search techniques find that hybrid agorithms—combining a
stochastic search with other, more problem-specific, optimisa-
tion techniques—often out-perform pure stochastic search tech-
nigues. In a variation of the simulated annealing algorithm de-
scribed above, severa “major iterations’ were performed, each of
which comprised five independent simulated annealing runs. The
best schedule found in each major iteration was optimised with
sequential quadratic programming and the result was used as the
starting solution for the next major iteration.

Optimisation of NPV by genetic algorithms

Genetic algorithms Genetic algorithms (and, more generaly,
evolutionary algorithms) areaclass of stochastic search techniques
inspired by natural evolution (Holland). Crudely, this inspiration
is that, over time, organisms adapt to their environment, becom-
ing fitter. The aim of genetic algorithmsisto simulate key aspects
of natural evolving systems, and so harness their problem-solving
ability for search and optimisation problems.

Genetic algorithms differ from the search techniques described
previously in a number of important ways. First, instead of using
asingle current point, genetic a gorithms maintain a popul ation of
points from the search space. The second key difference concerns
the choice of the next point to test. Instead of basing this choice
on the current solution, genetic algorithms typically use two par-
ent solutions. Thus, in addition to a unary move operator (see be-
low), genetic algorithms employ binary move operators, known as
recombination or crossover operators, which take a pair of parent
solutions and combine them in some way to produce a new child
solution. Theideais to produce a child which “inherits’ some of
its propertiesfrom each parent. Several waysinwhichtwo produc-
tion schedules can be crossed to produce a child schedule will be
described bel ow—for variousreasons, chiefly optimisation perfor-
mance and the constraints, the crossover is not quite as smple as
taking some production rates from one parent schedule and other
production rates from the other.

“Survival of thefittest” is modelled by the process of selection.
There are two opportunitiesto apply selection pressurein genetic
algorithms. The first is in the choice of parents, which may be
biased towards better (“fitter”) members of the population. Sec-
ondly, when children are produced, the choice of which members
of the population they should replace may be biased toward the
poorer solutions. While it is not particularly important where in
the algorithm selection pressure is applied, the level of selection
pressure is important. If it is too high, the search will tend to get
quickly stuck in local optima. If it istoo low, the search may be
unduly slow, or may even fail to generate solutions of improving
quality.

Typically, a conventional unary move operator (called a muta-
tion operator in this context) is applied to the child solution be-
fore it is evaluated. Mutation is one of the techniques used to



maintain diversity in the population and thereby prevent prema-
ture convergenceto an unacceptably poor solution. Gaussian creep
mutation, which potentially adds Gaussian noise to each variable
(Davis; Baeck et al.), was used in this case.

A simple genetic algorithm isillustrated in figure 1 and a com-
prehensive description of techniquesused in evolutionary comput-
ing can be foundin Surry & Radcliffe.

Representations and operators in genetic algorithms Ulti-
mately, the success of any search method depends on the order in
which it generates points in the search space. The basic require-
ment inthe case of agenetic algorithm can roughly be stated as“ the
effect of crossing two good solutions should often be to produce
another good solution”. This requirement is of course problem-
specific—it depends on the nature of the objective function. In
most cases, salient features of the problem are known and move
operators that incorporate this knowledge are very likely to out-
perform those that do not (Davis).

It is most important, when designing a genetic operator, to have
regard to themovesthat it generatesin the search space. However,
in practice, it is usually convenient to define an operator in terms
of the effect it has on the internal data structures used to represent
the solutions. The simplest representation tried for this problem
was atwo-dimensional, real array of sizeny x ny, which directly
represented the target productionrates {z; ; }. The crossover oper-
ator employed with this representation was “rectangular crossover
with blend-1 at boundaries’ (RECT-BLX-1), shown in figure 2.
Before evaluation of the child schedule, arepair operator was ap-
plied to ensure the child satisfied the constraints (this is discussed
in the next section).

Blend crossover (BLX) is often used in evolutionary algorithms
for real-parameter optimisation. Given asingle pair of real vari-
ables z < y to recombine, BLX-% makes a uniform choice for its
outcomeintherange[r — ¢/2,y + §/2] whered = y — . Values
are then truncated to fall into the valid range. The use of BLX at
the boundariesin RECT—BLX-% supplements mutation as ameans
of reaching different real variable values from those present in the
initial population.

More problem-specific representationswere also tried, incorpo-
rating explicit start and end yearsin one case, and annual produc-
tion totalsin another. These required more sophisticated move op-
erators (generalisations of RECT-BLX-1), but led to significantly
faster or better optimisation, as shown in figure 4.

Handlingconstraints  In many cases (including the present case)
simple syntactic move operators are inadequate because of con-
straintson valid solutions, which will tend to beviolated by merely
cutting and splicing existing solutions. There are three principal
methods for handling constraints in genetic algorithms—building
more sophisticated operators that “understand” (ensure compli-
ance with) the constraints (Radcliffe & Surry), using repair opera
torsto “correct” infeasible child solutions, and employing penalty
functions. Of these, the last is the crudest, and is normally only

adopted when neither of the first two methods can be used. For
this problem, the repair technique was used.

When repair operators are employed, an interesting decision
arises as to whether to place the infeasible child in the population
(using the repaired version of the child only for the purposes of
computing the objective function), or to placetherepaired child in
the population instead. While, on the face of it, it appears more
sensible always to place the repaired version of the child in the
population, the genetic a gorithm may havedifficulty exploringthe
whole solution space as infeasible regions can provide a barrier
to the search. Thereis empirical evidence (Davis & Orvosh) that
adopting aprobabilistic approachto saving repaired solutionsis of -
ten agood strategy. Thisis borne out by the results shown in fig-
ured.

Other genetic algorithm parameters Many variations of a ge-
netic algorithmare possible. Aswell asthe choice of operatorsde-
scribed in previous sections, the authors investigated the effect of
the following parameters on this problem.

Generation of the initial population. A “maximally random”
strategy performed best, rather than, for example, seeding the pop-
ulation with schedules of the * plateau-with-tail” form.

Population size.  In general, larger populations find better solu-
tions but, of course, computational cost scales linearly with pop-
ulation size. In many real-world problems, such as the one under
discussion here, the available compute time is a strong constraint
and the population size hasto be chosen to produce the best result
in thetime available. A size of 1024 was found to be a good com-
promisein this case.

Population structure.  Structured populations introduce a “ spa-
tial” structure to “localise” the interaction between the solutions.
In anisland model, a separate genetic algorithm runs on each of a
number of conceptual islands, and solutions occasionally migrate
from oneidland to another. In afine-grained model, each solution
has a unique location on a grid and mating only occurs within lo-
cal neighbourhoods (demes). The aim in any case is to encourage
the development of different kinds of solution in different parts of
the population (“ speciation”) and thereby avoid premature conver-
genceand improvefina performance. Structured population mod-
els also facilitate implementation on parallel or distributed com-
putersfor faster optimisation. On this problem, structured and un-
structured model s with appropriate parameters were found to per-
form equally well.

Selection.  Binary tournament selection (with p = 1, Goldberg &
Deb) wasused. To select each parent, thisstrategy pickstwo mem-
bers at random from the population and then chooses the better of
the two.

Replacement. The best strategy found for this problem involved
a“degree of ditism”, in which a sufficiently good solution might
survive indefinitely in the population.



Optimisation of NPV with a“ memetic” algorithm A memetic
algorithm is a hybrid genetic algorithm, which incorporates some
degree of local optimisation of each new solution before evalua-
tion. If thelocal optimisationisguaranteedtofind alocal optimum,
then the memetic algorithm effectively searches the space of local
optima rather than the whole solution space. For this project, se-
guential quadratic programming was used for the local optimisa-
tion. Although the high cost of local optimisation meant that the
algorithm was only possible with a small population and a small
number of generations, it produced the best schedule of al (fig-
ureb5).

Results of NPV optimisation

Because the evaluation of NPV was the most significant computa-
tional cost, the performance of each algorithm was measured by
the best NPV it obtained after a fixed number of evaluations of
the objective function (in this case one million, representing an
hour on a fast workstation). A secondary measure was the speed
at which the algorithm attained “good” solutions, if this occurred
notably sooner than a million evaluations. Several runs were per-
formed for each choice of parameters, to assess the variability of
the result.

NPV values, oil and gas rates are normalised relative to a ref-
erence schedule. The results are presented in order of increasing
NPV.

Results from simulated annealing Out of many choices of pa
rameters, the best involved an exponential cooling schedule of ten
steps, fromT = Ty = 1073 to T = 3 x 10~* (relative to
normalised NPV) with characteristic move size « = T'/Tp, and
MoveSt art Year used instead of MoveRat e precisely every
500th move. The best schedule obtained with ssimulated anneal -
ing is shown in figure 3, with NPV=1.326. The starting point in
this case was a big-bang schedule (with NPV=0.051), in which all
fields operate at maximum achievable rates over the whole period
of ny years. At least with the particular move operators used in
this project, simulated annealing appears to have difficulty in re-
ducing rates to zero to remove the long “tail” on the schedule.

Results from sequential quadratic programming  Unsurprisingly,
the choice of starting point was very important here. A hundred
runsfrom random starting points (atotal of about 1.1 million eval-
uations) produced a best NPV of only 1.451. The best schedule
obtained through sequential quadratic programming started from
the “big-bang” schedule (NPV=0.051), and about 10,000 evalua-
tions were required to achieve an NPV of 1.525. In comparison
with the best schedul e produced by simulated annealing (figure 3,
NPV=1.326), this schedule had a slightly higher and longer (four-
year) oil “plateau”, less phasing (almost all thefields started imme-
diately), a smoother “tail”, and production was abandoned much
earlier (year 23), providing an increase in revenue of 0.061 and a
decrease in cost of 0.138 (both discounted).

Results fromhybrid simulated annealing with sequential quadratic
programming The best schedule obtained by this method had an
NPV of 1.544. The algorithm required around one million eval-
uations per run (with little variability in the final NPV between
runs). The original starting point was the best schedule produced
by sequential quadratic programming (NPV=1.525), from which
the new schedule differed by extending the operating life of about
half of the fields, reducing the operating life of one field slightly,
smoothing the profile of onefield, and reducing the plateau rate for
another, resultinginafurther 0.017 extrarevenueand afurther cost
saving of 0.002 (both discounted).

Results from genetic algorithms ~ Apart from population size, the
two features which had the strongest effect on the algorithm’s per-
formance were the choice of representation and the strategy for re-
pair Thisisillustrated in figure 4.

The best schedule obtained by a pure genetic algorithm had
an NPV of 1.553. This schedule combined good features of
the best schedule produced by simulated annealing (figure 3,
NPV=1.326)—namely, a similar degree of phasing and similarly
low plateau rate—with those of the best schedule produced by
sequential quadratic programming (NPV=1.525)—afour-year oil
plateau and early abandonment (in this case, year 20). In compar-
ison to the latter schedule, this schedule produced 0.033 less rev-
enue, but provided a cost saving of 0.060 (both discounted).

Results from a memetic algorithm The best result produced by
the memetic algorithm is shown in figure 5, with NPV=1.577. It
was also the best schedule found overall. It required about eight
million evaluations(withlittle variability in thefinal NPV between
runs)—after the standard one million runs, the NPV wastypically
only 80-85% of thisfigure. The scheduleis broadly similar to the
best schedule produced by a pure genetic algorithm (NPV=1.553),
but with an even lower and longer (five-year) oil plateau and with
phasing slightly morelikethat of the best schedule produced by se-
guentia quadratic programming (NPV=1.525). In comparison to
the latter, this schedule produces 0.074 |ess revenue, but provides
acost saving of 0.126 (both discounted).

Optimisation of NPV with uncertainty

The most significant source of uncertainty in this problem is the
characterisation of the reservoirs. In the context of the “tank
model”, this manifests itself as uncertainty in the deliverabilities
and reserves, whichistranslated into uncertainty in the actual rates
achieved for a given target schedule. To model this, during each
evaluation, the deliverahility and reserve were sampled from sta-
tistical distributions previoudly fitted to datafrom “ off-line” reser-
voir smulations. The aim was to optimise the expected value of
the NPV, which was estimated from the sample mean of repeated
evaluations of NPV.

Genetic algorithms, by nature, cope more robustly than many
other methods with the optimisation of a“noisy” objective func-
tion. Choice of sasmple sizeisacritical trade-off—it must be high



enough to permit the algorithm to distinguish true variation in fit-
ness from noise, but not so large that the low number of achievable
evaluations limits the evolution process.

Despite the NPV being quite noisy (with a standard deviation
typically around 0.3), we have found that genetic algorithms are
able to optimise successfully. The schedules with the best “ deter-
ministic’ NPV have proved remarkably robust when uncertainty
was introduced—althoughthereisasmall, statistically significant,
trade-off between maximising the expected NPV and maximising
the “deterministic” NPV. The results of thiswork will be the sub-
ject of afuture paper.

It is worth remarking here that appropriate genetic algorithms
are also able to perform multi-criterion optimisation. They could
be used, for example, to explore the trade-off between maximisa-
tion of NPV and minimisation of one or more measures of risk or
exposure.

Conclusions

A genetic algorithm, from arandom start, out-performed both sim-
ulated annealing and sequential quadratic programming (and even
a hybrid of the two) using a few tens of CPU hours. The over-
all effort required to do this was no greater than that of the other
techniques. An intelligent choice of genetic operators and repre-
sentation, guided by knowledge of the problem, provided appar-
ently significant performance improvements. Further gains were
achieved through the use of a hybrid genetic algorithm with lo-
cal optimisation (a“memetic” algorithm). The gainin NPV from
the use of genetic algorithmsrepresented afew per-cent over other
techniques. As always, it must be borne in mind that the model is
an abstraction from reality and confidencein the result of the opti-
misation can only be as high as confidence in the model incorpo-
rated into the objective function. Nevertheless, for problems such
as this, where the value is in billions of dollars, small improve-
ments may represent significant benefits.

Thereservoir engineer istypically interested not just in a*“ best”
solution, but in understanding whi ch features characterise good so-
lutions, and in mapping out the extent to which good aternatives
tothe"best” solutionexist. A stochastic searchtechniquenaturally
producesan ensembl e of good solutionsrather thanasingle” best”.
Whilst all the good schedules found were reassuringly similar in
many features—not least the NPV value—there were interesting
qualitative differences between the schedules produced by differ-
ent optimisation techniques. |n particular, genetic algorithms(with
the operators employed here) appeared better than cal culus-based
techniques at searching over phasing configurations, and also bet-
ter than simul ated annealing at optimising the plateau and tail rates.

Appendix: RPL2

Thesoftwareenvironment used for all thetechniquesin thisproject
was the Reproductive Plan Language RPL2 (Surry & Radcliffe).

RPL2 comprises an interpreter, run-time system and a set of op-
erator libraries. To this the user typically adds his or her own li-
brary of operators (written in C or Fortran) which bind to RPL2
instructions. The subsegquent development cycle for search algo-
rithms is therefore comparatively short. Representations can be
user-specified if required. RPL2 runs on a variety of platforms
(including a number of parallel and distributed systems—the lan-
guage supports parallel execution transparently) and is available
from Quadstone Ltd.
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Figure 1: A smplegenetic agorithmfor evolving good production schedules. The bar-chartsrepresent production schedules and the numbers
represent the associated NPV predicted by the model (in normalised units).
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Figure 2: The RECT-BLX-1 crossover operator.
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Figure 3: The best schedule obtained with simulated annealing. The bar-charts show the annual oil and gas production rates for each field in
each year. Thelong “tail” makes operating costs high.
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Figure 4. Two factors which had a significant effect on optimisation performance were the choice of representation, and the probability of
placing the repaired version of each child into the population.
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Figure 5: The best result produced by the memetic algorithm.



